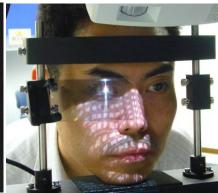
VR研究者から見た VR/メタバースの 教育応用の将来

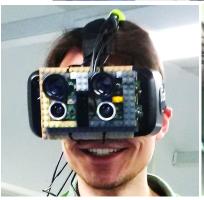
清川清

奈良先端科学技術大学院大学 先端科学技術研究科 サイバネティクス・リアリティ工学研究室

- ●自己紹介
- ●VR/メタバースの歴史 -メタバースは古くて新しい
- ●HMDの現状と未来
 - -日常生活のパートナーへ
- ●VR/メタバースの未来
 - -教育に欠かせないインフラへ


- ●自己紹介
- ●VR/メタバースの歴史 -メタバースは古くて新しい
- ・HMDの現状と未来
 - -日常生活のパートナーへ
- ●VR/メタバースの未来
 - -教育に欠かせないインフラへ

自己紹介


1994~1998 奈良先端大 博士前期・後期課程 1999~2002 情報通信研究機構 (NICT) 2002~2017 大阪大学 サイバーメディアセンター 2017~ 奈良先端大 情報科学領域

- ●自己紹介
- ●VR/メタバースの歴史 -メタバースは古くて新しい
- ・HMDの現状と未来
 - -日常生活のパートナーへ
- ●VR/メタバースの未来
 - -教育に欠かせないインフラへ

XR 超略史

00's 60's 70's 80's 90's 10's

VR(1987) **MR**(1994)

AR(1990)

Digital Twin(2010)

20's

Sword of **Damocles**

EyePhone

Glasstron

Pokémon

GO

DK1 Glass

HoloLens

Kinect

Apple Vision Pro

The Demo

SIMNET

Second Life

Horizon Worlds

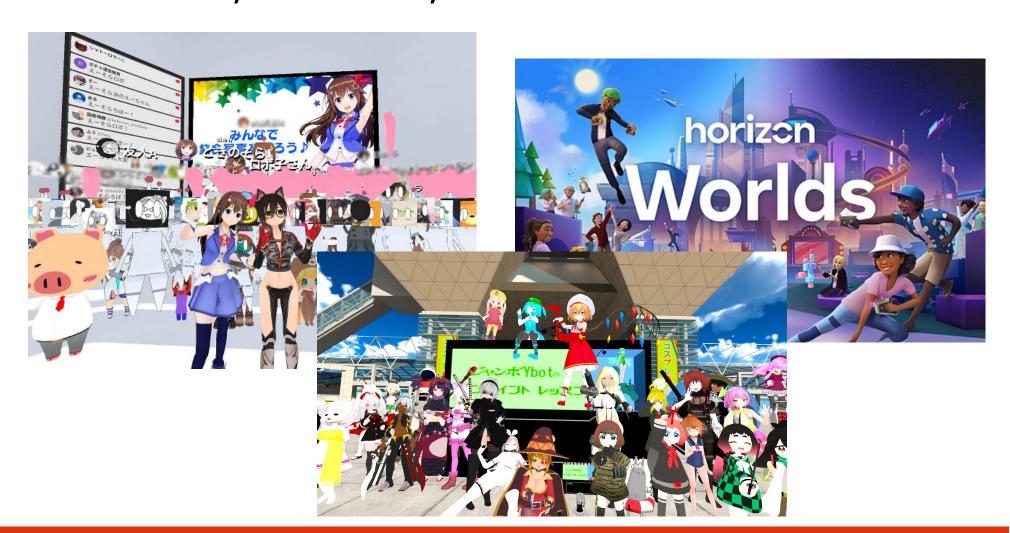
VRChat

MMORPG

大規模多人数同時参加型オンラインRPG

1990 Habitat (富士通)

2016 ポケモンGO (ナイアンティック)


2003 Second Life (Linden Lab)

2020 あつまれどうぶつの森 (ニンテンドー)

ソーシャルVR

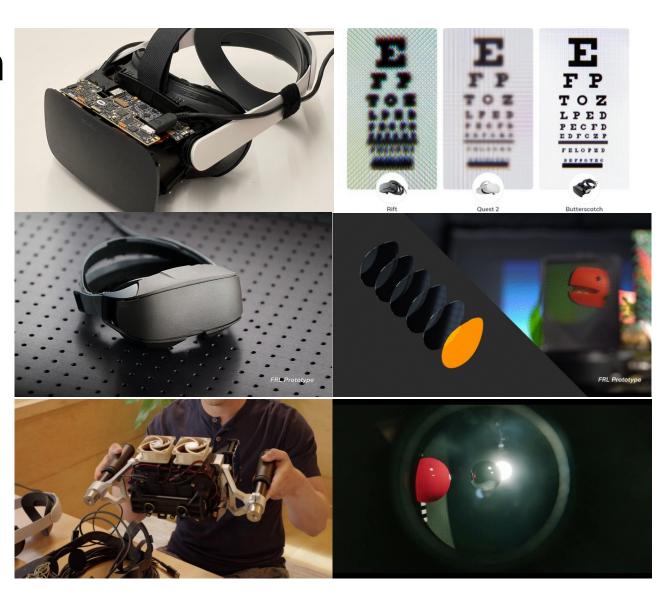
cluster, VRChat, Horizon Worlds…

テレプレゼンス

臨場感通信会議 (1989)

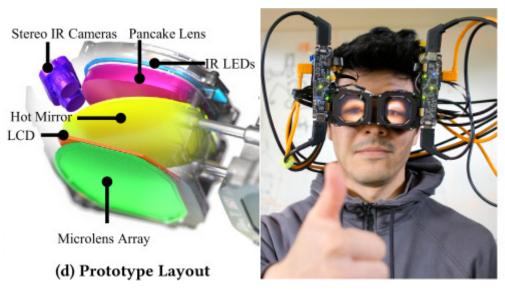
Room-size telepresence (2011)

The office of the future (1998)



Holoportation (2016)

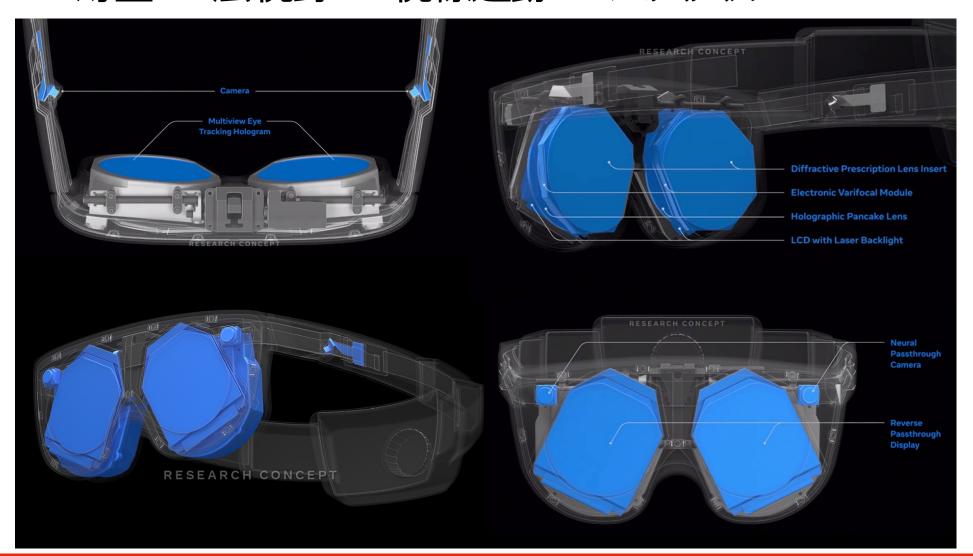
- ●自己紹介
- ●VR/メタバースの歴史 -メタバースは古くて新しい
- HMDの現状と未来-日常生活のパートナーへ
- ●VR/メタバースの未来−教育に欠かせないインフラへ

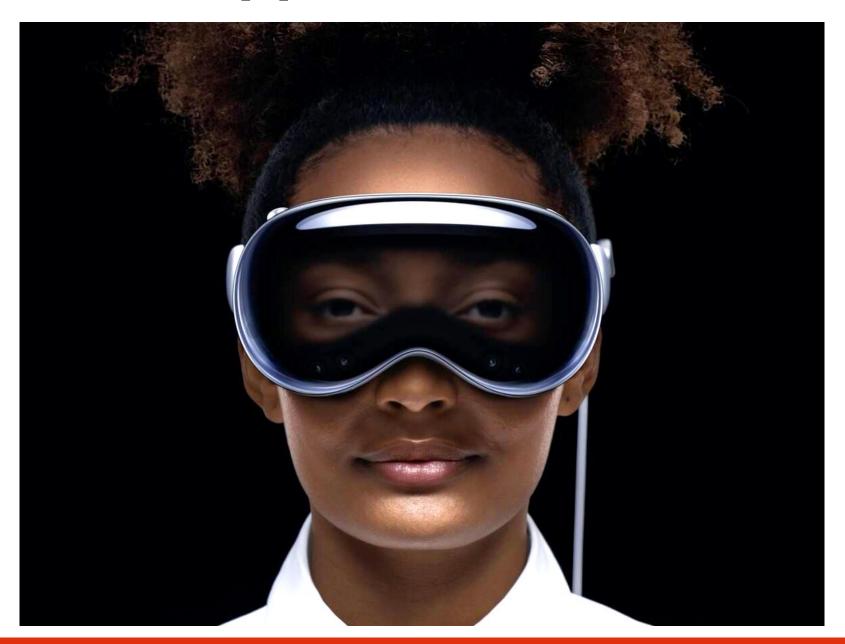

Meta のさまざまな試作HMD

- Butterscotch
 - 高解像度
 - 視力1.0相当
- Half Dome
 - 焦点調節
 - 可動部なし
- Starburst
 - HDR
 - 20,000 nits

Reverse Pass-through VR (2022)

- 周囲の人とのアイコンタクトを実現
 - 赤外画像からの眼付近のカラー3D画像生成
 - ライトフィールドディスプレイによる提示





Mirror Lake

● 薄型 + 広視野 + 視線追跡 + パススルー + …

Apple Vision Pro

Apple Vision Pro の特長

・・ ●高解像度 (両眼で23M画素, ~40画素/度 (?))

低遅延パススルー (12ms)

●アイトラッキング, ハンドトラッキング

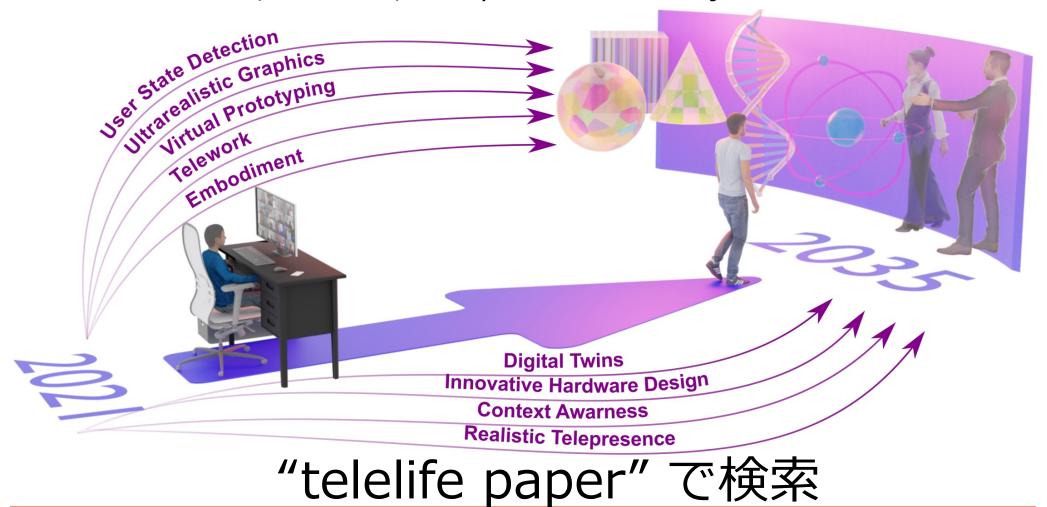
リバースパススルー

Apple Vision Pro の課題

- ●重量 (~450g (?))
 - 一日数時間つけて過ごすには重い
- ●解像度 (両眼で23M画素, ~40画素/度 (?))
 - 細かい文字を読むにはやや不十分
- ●周辺視野の欠如 (~120度)
 - 耳もとや足もとが見えない
- ●奥行き感
 - カメラ位置のずれ、自然なボケの欠如
- ●遅延 (12ms)
 - End-to-endの遅延量は気づくレベル (?)

最近のHMDの研究動向 ビデオシースルーHMDが熱い!

- ●注視距離による自然な ボケを再現 (IEEE VR22 最優秀賞)
- 視差や遅延がきわめて 小さい (IEEE VR23 最優秀賞)



- ●自己紹介
- ●VR/メタバースの歴史 -メタバースは古くて新しい
- HMDの現状と未来-日常生活のパートナーへ
- ●VR/メタバースの未来−教育に欠かせないインフラへ

Telelife: The Future of Remote Living (2021)

J. Orlosky, M. Sra, K. Bektas, H. Peng, J. Kim, N. Kos'myna,
T. Hollerer, A. Steed, K. Kiyokawa. & K. Akşit

XR のグランドチャレンジ

- 人らしさ・人と人のふれあいの再現
- ●完全な五感の再現
- ●完全なセンシング(ユーザも環境も)
- ●AR から VR までシームレスな切り替え
- 一人も取り残さないインクルーシブ技術

VR/メタバースの教育応用

●空間の再現

- 現実の再現,自分ごととしての体験学習
- 現実を超えた空間、距離や物理法則などの克服

●自己変容

- 自身の姿かたちを秘匿・変容できるメリット
- 多様性を尊重した教育・共感の醸成

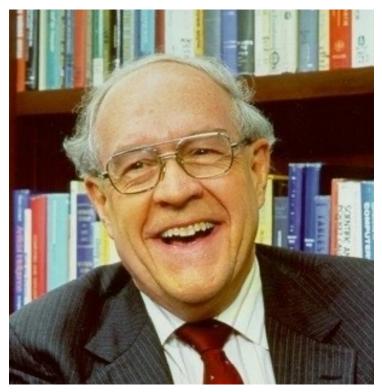
●個別最適化

- 学習環境・教育コンテンツ・指導方法
- 生成AIでより優れた教師・クラスメートもすぐ

メタバース ×生成AI

- NVIDIA Avatar Cloud Engine (ACE)
 - 生成AIでゲームのNPCと自然な会話ができる

メタバース ×生成AI


- ●生成AIで25人のNPCの行動をシミュレート
 - 自然な社会活動が発生 (Google & Stanford)

Park et al., "Generative Agents: Interactive Simulacra of Human Behavior", arXiv, 2023

Frederick P. Brooks Jr.

(Apr. 19, 1931 - Nov. 17, 2022)

1964 IBM System/3601975 The Mythical Man-Month1985 Medal of Technology1999 Turing Award

IBMで汎用計算機の開発を牽引し、 ノースカロライナ大で長年CG/VR 研究を率いたパイオニア

IA > AI

Intelligence amplifying

Artificial intelligence